Materi Pola,Barisan,dan Deret - Cyber_zexia Blog

Breaking

About

BANNER 728X90

Sabtu, 13 Februari 2016

Materi Pola,Barisan,dan Deret

A. Pola Bilangan Dalam Matematika

Berawal dari tugas matematika di sekolah oleh guru matemtika yang memberi tugas untuk mencari pola – pola bilangan matematika, maka pada kesempatan kali ini saya akan membagikan beberapa jenis pola bilangan matematika. Tanpa panjang lebar, langsung saja kita ke pembahasannya.

Pola bilangan ganjil

  • Pola bilangan ganjil memiliki pola 1, 3, 5, 7, 9 ….
  • Barisan bilangan ganjil adalah 1,3, 5, 7, 9, …
  • Deret bilangan ganjil adalah 1 + 3 + 5 + 7 + 9 + ….
  • Rumus mencari suku ke ke-n adalah Un = 2n – 1
  • Rumus mencari jumlah n suku pertama adalah Sn = n2
  • Berikut adalah gambar pola dari bilangan ganjil
    pola barisan bilangan ganjil

Pola bilangan genap

  • Pola bilangan genap adalah 2, 4, 6, 8, 10, …..
  • Barisan bilangan genap adalah 2, 4, 6, 8, 10, ….
  • Deret bilangan genap adalah 2 + 4 + 6 + 8 + 10 + …..
  • Rumus untuk mencari suku ke-n adalah Un = 2n
  • Rumus mencari jumlah n suku pertama adalah Sn = n2 + n
  • Gambar pola bilangan genap adalah sebagai berikut
Pola Barisan bilangan genap

Pola bilangan segitiga

  • Pola bilangan segitiga adalah 1, 3, 6, 10, 15, 21, …..
  • Barisan bilangan segitiga adalah 1, 3, 6, 10, 15, 21, …..
  • Deret bilangan segitiga adalah 1 + 3 + 6 + 10 + 15 + 21 + …..
  • Rumus mencari suku ke-n adalah Un = ½ n (n + 1 )
  • Rumus mencari jumlah n suku pertama adalah Sn = 1/6 n ( n + 1 ) ( n + 2 )
  • Gambar pola bilangan segitiga adalah sebagai berikut
    pola barisan bilangan segitiga

Pola bilangan persegi

  • Pola bilangan persegi adalah 1, 4, 9, 16, 25, …..
  • Barisan bilangan persegi adalah 1, 4, 9, 16, 25, …..
  • Deret bilangan persegi adalah 1 + 4 + 9 + 16 + 25 + ……
  • Rumus mencari suku ke-n adalah Un = n2
  • Rumus mencari jumlah n suku pertama adalah Sn = 1/6 n ( n + 1 ) ( 2n + 1 )
  • Gambar pola bilangan persegi adalah sebagai berikut
    pola barisan bilangan persegi

Pola bilangan persegi panjang

  • Pola bilangan persegi panjang adalah 2, 6, 12, 20, 30, ……
  • Barisan bilangan persegi panjang adalah 2, 6, 12, 20, 30, ……
  • Deret bilangan persegi panjang adalah 2 + 6 + 12 + 20 + 30 + …..
  • Rumus mencari suku ke-n adalah Un = n ( n + 1 )
  • Rumus mencari jumlah n suku pertama adalah Sn = 1/3 n ( n + 1 ) ( n + 2 )
  • Gambar pola bilangan persegi panjang adalah sebagai berikut
pola barisan bilangan persegi panjang

Pola bilangan segitiga pascal

  • Rumus mencari jumlah baris ke-n adalah 2n – 1
  • Gambar pola bilangan segitiga pascal adalah sebagai berikut
pola barisan bilangan segitiga pascal

Pola bilangan Fibonacci

  • Pola bilangan fibanocci adalah pola bilangan dimana jumlah bilangan setelahnya merupakan hasil dari penjumlahan dari dua bilangan sebelumnya.
  • Pola bilangan Fibonacci adalah 1, 1, 2, 3, 5, 8, 13, 21, 34, …..
  • 2 diperoleh dari hasil 1 + 1 3 diperoleh dari hasil 2 + 1, 5 diperoleh dari hasil 3 + 2 dan seterusnya
  • Rumus mencari suku ke-n adalah Un = Un – 1 + Un - 2

Pola bilangan pangkat tiga

  • Pola bilangan pangkat tiga adalah pola bilangan dimana bilangan setelahnya merupakan hasil dari pangkat tiga dari bilangan sebelumnya
  • Contoh pola bilangan pangkat tiga adalah 2, 8, 512, 134217728, …..
  • Keterangan : 8 diperoleh dari hasil 2 pangkat tiga, 512 diperoleh dari hasil 8 pangkat tiga, dan seterusnya

Pola bilangan aritmatika

  • Pola bilangan aritmatika adalah pola bilangan dimana bilangan sebelum dan sesudahnya memiliki selisih yang sama.
  • Contoh pola bilangan aritmatika adalah 2, 5, 8, 11, 14, 17, ….
  • Suku pertama dalam bilangan aritmatika dapat disebut dengan awal ( a ) atau U1, sedangkan suku kedua adalah U2 dan seterusnya.
  • Selisih dalam barisan aritmatika disebut dengan beda dan dilambangkan dengan b.
  • Karena bilangan sebelum dan sesudahnya memiliki selisih yang sama, maka b = U2 - U1 = U3 – U2 = U4 – U3 = U5 – U4 = U6 – U5 = 3
  • Rumus mencari suku ke-n adalah Un = a + ( n – 1 ) b
  • Rumus mencari jumlah n suku pertama adalah Sn = n/2 ( a + Un ) atau Sn = n/2 ( 2 a + ( n – 1 ) b )

B. Barisan Aritmatika

          (1) 3, 7, 11, 15, 19, ...
          (2) 30, 25, 20, 15, 10,...
Perhatikan bahwa selisih di antara suku-sukunya selalu tetap. Barisan yang demikian itu disebut barisan aritmetika. Selisih itu disebut beda suku atau beda saja dan dilambangkan dengan c.
          Barisan (l) mempunyai beda, b = 4. Barisan ini disebut barisan aritmetika naik karena nilai suku-sukunya makin besar.
          Barisan (2) mempunyai beda, b = -5. Barisan ini disebut barisan aritmetika turun karena nilai suku-sukunya makin kecil.
Suatu barisan U1, U2, U3,....disebut barisan aritmetika jika selisih dua suku yang berurutan adalah tetap. Nilai Untuk menentukan suku ke-n dari barisan aritmetika. perhatikan kembali contoh barisan (l).
        3, 7, 11, 15, 19, ...
Misalkan U1, U2, U3 , .... adalah barisan aritmetika tersebut maka
       U1 = 3 =+ 4 (0)

       U2 = 7 = 3 + 4 = 3 + 4 (1)
       U3 = 11 = 3 + 4 + 4 = 3 + 4 (2)
            ....
       Un = 3 + 4(n-1)
Secara umum, jika suku pertama (U1) = a dan beda suku yang berurutan adalah b maka dari rumus Un = 3 + 4(n - 1) diperoleh 3 adalah a dan 4 adalah b. Oleh sebab itu, suku ke-n dapat dirumuskan
       Un = a + b(n-1)
Barisan aritmetika yang mempunyai beda positif disebut barisan aritmetika naik, sedangkan jika bedanya negatif disebut barisan aritmetika turun.
        U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika
        U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta
Un = a + (n-1)b = bn + (a-b) → Fungsi linier dalam n


Deret Aritmatika

Seperti telah dibahas sebelumnya, deret adalah bentuk penjumlahan dari suku-suku pada sebuah barisan. Jika U1, U2, U3, ... barisan aritmetika. U1, U2, U3, ... adalah deret aritmetika.
Untuk mendapatkan jumlah n suku pertama dari deret aritmetika, perhatikan kembali deret yang dihasilkan barisan (l ).
      3 +7 + 1l + 15 + 19 + ...
Jika jumlah n suku pertama dinotasikan dengan.Sn maka S dari deret di atas adalah :
Gambar:58.jpg
Perhatikan jumlah 5 suku pertama, S yang diperoleh. Angka 3 pada perhitungan tersebut berasal dari suku pertama, sedangkan l9 adalah suku ke-5. Oleh karena itu, jumlah suku ke-n adalah
Gambar:59.jpg
Jika nilai Un tidak diketahui, kita gunakan rumus Un, barisan aritmetika, yaitu Un = a + (n-1)b, sehingga jumlah n suku pertama adalah
Gambar:60.jpg
jumlah n suku pertama dari suatu deret aritmetika yang suku pertamanya a dan beda b adalah
Gambar:61.jpg
Untuk memudahkan perhitungan Sn suatu deret aritmetika, perhatikan hal-hal berikut. a. Jika diketahui suku pertama a dan beda b, gunakan rumus Gambar:62.jpg b. Jika diketahui suku pertama dan suku ke-n,gunakan rumus
Gambar:63.jpg






C. Barisan Geometri

Suatu barisan U1, U2, U3, ....disebut barisan geometri jika perbandingan dua suku yang berurutan adalah tetap. Nilai perbandingan yang tetap itu disebut rasio.
Bagaimana cara menentttkan suku ke-n tanpa harus menentukan semua suku sebelumnya?
Gambar:64.jpg Suatu barisan geometri disebut barisan geometri rurun jlka 0 < r < 1 dan disebut barisan geometri naik jika r > l.
Contoh :
Tentukan suku ke-10 dari barisan geometri 4, 8, 16, ...!
Jawab :
Dari Barisan Geometri 4, 8, 16, ..., diperoleh suku pertama a = 4 dan rasio r = 2 sehingga
Gambar:65.jpg 

Deret Geometri

Bentuk penjumlahan dari barisan geometri U1, U2, U3, ..., yaitu U1 + U2 + U3 +... disebut deret geometri.
a + ar² + ....... + arn-1 disebut deret geometri
a = suku awal
r = rasio
n = banyak suku
Jumlah n suku
Gambar:66.jpg
Gambar:67.jpg
Keterangan:
  • Rasio antara dua suku yang berurutan adalah tetap
  • Barisan geometri akan naik, jika untuk setiap n berlaku
    Un > Un-1
  • Barisan geometri akan turun, jika untuk setiap n berlaku
   Un < Un-1
Bergantian naik turun, jika r < 0
Berlaku hubungan Un = Sn - Sn-1
Jika banyaknya suku ganjil, maka suku tengah
         _______     ________
Ut = √ U1xUn = √U2 X Un-1  ......dst.
Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar

1 komentar:

Diberdayakan oleh Blogger.

Pages - Menu